

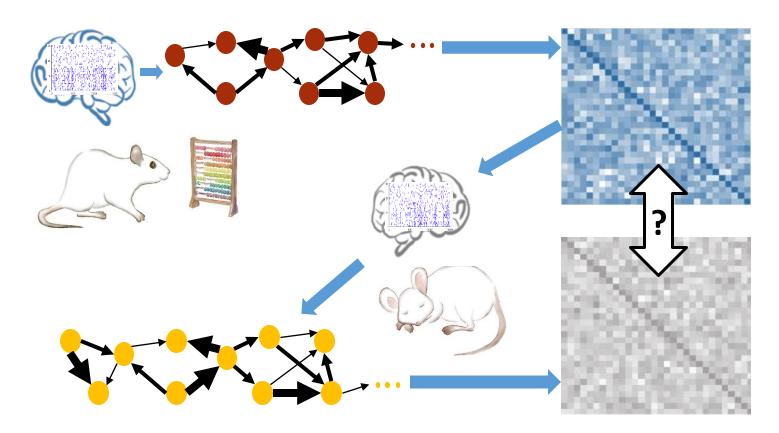
Causality in Replay: Detecting Effective Connectivity from Spike Trains

Marium Yousuf¹, Laurent Pagnier¹, Michael Chertkov¹, Jean-Marc Fellous²

¹Department of Mathematics, University of Arizona; ²Institute for Neural Computation, University of California San Diego

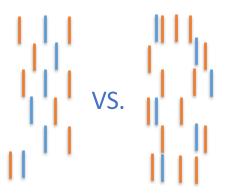
INTRODUCTION

- Neural reactivation during sleep/rest resembles preceding tasks (replay, memory consolidation)
- Replay of spike sequences may capture underlying causal functional relationships between neurons
- Effective connectivity Directed causal influence [Friston, 2011]
- Detection of replay and its causal structure are important to understand neural computations

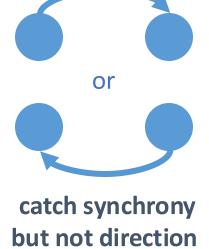


EXISTING METHODS

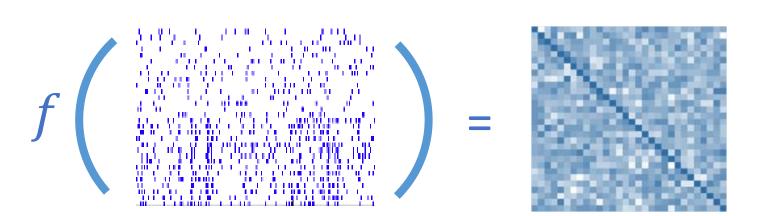
Why existing methods fall short?



fail for high signal to-noise ratio



fail to capture recurrent relationships



assume f is linear, oversimplifying the interactions between neurons

OBJECTIVES

Develop a model that is

- robust to sparse spiking,
- applicable to diverse underlying topologies,
- is **non-parametric** (assumes **non-linearity**)

METHODS

Data Generation

I. Fully Synthetic Spikes

- Known weight matrix W and bias terms β
- Simulate trajectories of binary states $s_t \in$ $\{-1,+1\}^N$ for N neurons using W and β
- -1: no spike, +1: spike

II. NEURON (Biophysically realistic spikes)

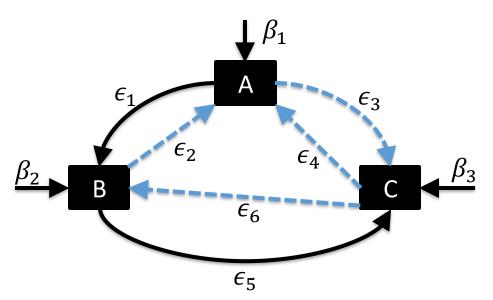
 Single compartment multi-current pyramidal cell network of CA3 place cells (binarized)

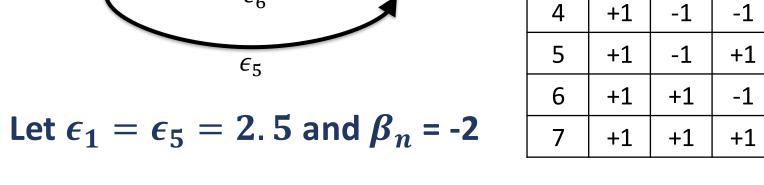
Probabilistic Model: CausalSpikeGraph

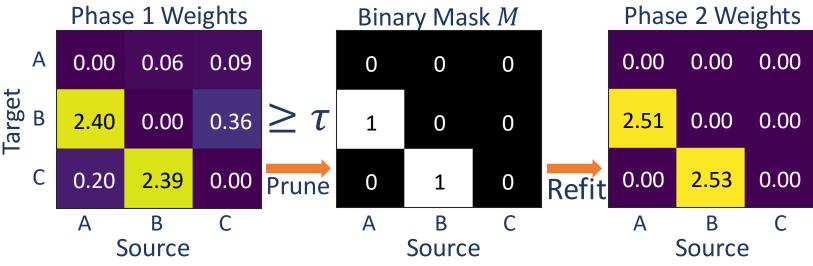
Build a $2^N \times 2^N$ transition probability matrix $p(s_{t+1,n} = +1 \mid s_t) = \sigma(\beta_n + W_n \cdot s_t)$

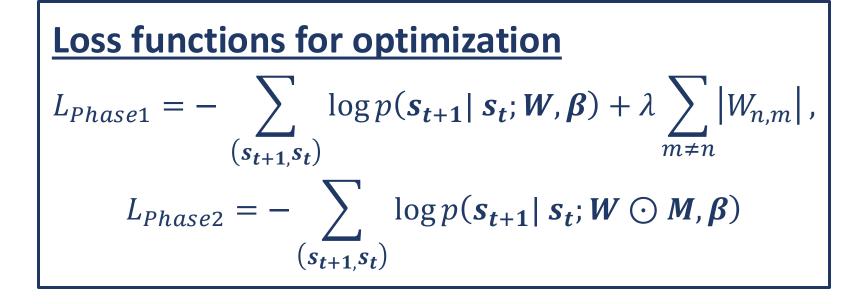
Goal: Recover W from observed paths (s_{t+1}, s_t)

- Optimize a dense model with L_1 regularization
- Prune using chosen threshold τ and obtain mask M
- Re-optimize survived edges for unbiased recovery.









RESULTS

W Recovery

W Recovery

N=3 N=10 N=30 N=50

N=3 N=10 N=30 N=50

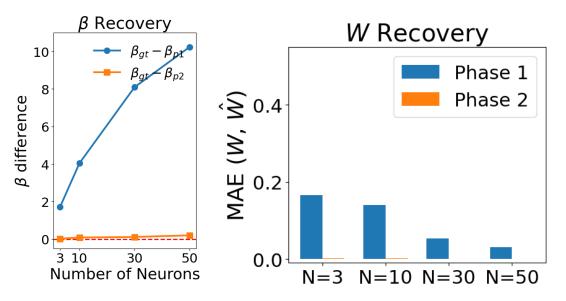
Phase 1

Phase 2

Phase 1

Phase 2

Feedforward



Multiple Sources, One Target

Multiple Targets, One Source

MAE 0.2

β Recovery

3 10 30 50 Number of Neurons

Recurrence

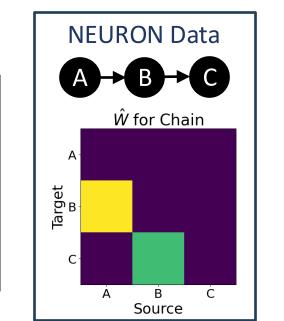
No Influence

β Recovery

Number of Neurons

 $\beta_{gt} - \beta_{p1}$

+1



NEURON Data

 $A \rightarrow B \leftarrow C$

A B C Source

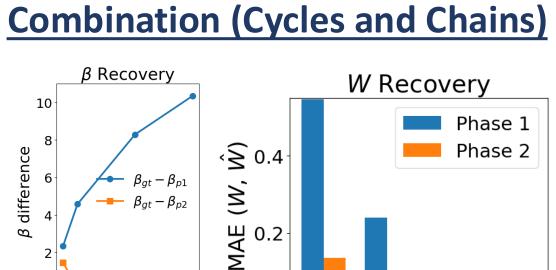
NEURON Data

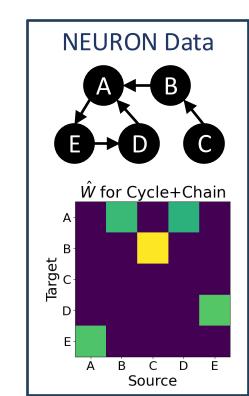
 $A \leftarrow B \rightarrow C$

W for Outward Fork

NEURON Data

 $A \rightarrow B \rightarrow C$





CONCLUSIONS

Introduced a causal structure method called CausalSpikeGraph (CSG)

- Faithful discovery of all general topologies
- Reliable performance on NEURON data
- Does not assume linearity in data
- Does not depend on data lag, like Granger Causality, Cross-Correlation
- No pairwise comparisons
- No acyclicity, or other strong, assumptions like in Structural Equation Model DirectLiNGAM

Next Steps:

- Remove CSG's reliance on binning to binarize spike trains
- Test CSG on different levels of signal-to-noise ratio and more complex/larger topologies
- Evaluate CSG's performance on more datasets from NEURON and against new reactivation detection methods [Tatsuno and Fellous, 2024]

Friston KJ. Functional and effective connectivity: a review. Brain Connectivity. 2011;1(1):13

Tatsuno M, Fellous JM. Long-term reactivation of multiple sub-assemblies in the hippocampus and prefrontal cortex. bioRxiv preprint.

ACKNOWLEDGEMENTS

Trainee Professional Development Award, SfN (MY), NSF Grant IIS 2342866 (JMF).

Ŵ for Cycle Phase 2

