# Marium Yousuf<sup>1</sup>, Michael Chertkov<sup>1</sup>, Jean-Marc Fellous<sup>1,2</sup>



# Detecting Replay in Multi-Unit Spike Data <sup>1</sup>Department of Mathematics, <sup>2</sup>Departments of Psychology and Biomedical Engineering | University of Arizona, Tucson, AZ

## **INTRODUCTION**

- Hippocampal replay of neural activity during sleep facilitates memory consolidation and retrieval
- Interpreting hippocampal replay is facilitated by the detection of causality (functional connectivity) between recorded neurons



Replay contains information about the functional connectivity of a network of neurons that can be mathematically extracted to make inferences about learning.

### **OBJECTIVES**

Statistical learning facilitates highly repetitive and structured cognitive functions such as learning and decision-making (Sherman et al. 2020). We:

- Create an algorithm that detects the functional connectivity within a network of neurons from their spike trains
- Determine *a similarity metric* to compare detected connectivity and ground truth from the simulations
- Study the metric's *robustness* with changes in *the total number of neurons*, synaptic strength, and sparsity of connection between neurons

# **METHODS**

### **NEURON Simulation Environment**

- One compartment, leak, INa, IKdr, IAHP, ICa, Ca pump, and diffusion
- AMPA and NMDA probabilistic synapses (facilitation depression) scaled to adjust synaptic strengths
- Excitatory and Inhibitory Ornstein Uhlenbeck processes (Destexhe et al, 2001) *in-vivo* like background synaptic inputs

### Algorithm

- 1) Uniform connectivity: N total number of neurons, W<sub>U</sub> Sparsity levels:  $S \in \{25, 50, 70, 80, 90, 100\}$  %
- 2) Realistic non-uniform connectivity:  $W_R \sim \mathcal{N}(\mu, I_{\epsilon})$ 
  - $\mu$ : mean conductance scaling
  - *c*: noise

Parameters •  $N \in \{10, 20, 30, 40, 50\}$ 

- Synchrony within *h ms*
- $W_U$  or  $W_R$

Simulation and Rastergram Analyses • *M<sub>C</sub>*: Spike coincidence counts *M<sub>S</sub>*: **Shuffled** spike coincidence counts



Voltage plot (a) and rastergram with replay in orange (b) against time in *ms*.





For different N, an increase in weights according to  $\Omega(n)$  achieves the same firing rate. Our approach focuses on the partial synchrony of spikes rather than the changes in firing rates.

### **RESULTS**

|  | Firing Rat | e versus | Synchrony |  |
|--|------------|----------|-----------|--|
|--|------------|----------|-----------|--|

- Weight index  $n \in \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $\Omega(n)$  describes the weight scaling factor

$$\Omega(n) = \begin{cases} \frac{(n-1)}{40N} & n \in [1,5] \\ \frac{33n-64}{1000N} & n \in [6,8] \end{cases}$$

### Similarity measure

• Similarity metric,  $\sigma$ , between binarized  $M_X$  and ground truth,  $G_Y$ 

$$\sigma = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{I}\left(M_{X}[i][j] = G_{Y}[i][j]\right)}{N^{2}}$$

where  $X \in \{C, S\}$  for types of spike coincidence and  $Y \in \{T, V\}$  for types of connection weights.

How many simulations are needed?



A weight with index n = 3 and average over 8 weight settings show that it takes about 35 simulations to reach a stable similarity measure for all N.





### Results

- Sparser connectivity shows minimal differences between the actual and shuffled spike coincidence counts

### Summary

- Our analyses extracted the functional connectivity from the spike train dataset. We: • Showed that 35 simulations were sufficient to reliably estimate the connectivity structure
- Confirmed that for different numbers of neurons and connection strengths, the firing rate is similar for all weights considered to ensure the focus on synchrony, not on firing rate
- Compared the results and the ground truth using a binarized similarity measure • Established the limits of the algorithm as simulation parameters were varied

### **Future Work**

- Use a probabilistic graphical approach to analyze patterns of connections (instead of pairwise comparisons) to better infer connectivity
- Introduce Hebbian synaptic plasticity during replay for increased biological relevance
- Vital probabilistic framework to capture causality between variables
- Edges in the BN will represent replay order between neurons (nodes)
- We hypothesize that BN will facilitate learning of unknown parameters in spike train data that will explain the underlying causality structure in real data
- Brynn E Sherman, Kathryn N Graves, Nicholas B Turk-Browne, The prevalence and importance of statistical learning in human cognition and behavior, Current Opinion in Behavioral Sciences, Volume 32, 2020, Pages 15-20, ISSN 2352-1546.
- A Destexhe, M Rudolph, J.-M Fellous, T.J Sejnowski, Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons, Neuroscience, Volume 107, Issue 1, 2001, Pages 13-24, ISSN 0306-4522.



networks.

### **CONCLUSIONS**

Algorithm performs better for smaller networks and higher weights

### Bayesian Networks (BN)

### **REFERENCES**

### **ACKNOWLEDGEMENTS**

Carter Travel Award (MY), NSF Grant 1703340 (JMF), Heather Jensen for encouraging feedback, and all the members of the Computational and Experimental Neuroscience Laboratory.